Biomedical events extraction using the hidden vector state model
نویسندگان
چکیده
OBJECTIVE Biomedical events extraction concerns about events describing changes on the state of bio-molecules from literature. Comparing to the protein-protein interactions (PPIs) extraction task which often only involves the extraction of binary relations between two proteins, biomedical events extraction is much harder since it needs to deal with complex events consisting of embedded or hierarchical relations among proteins, events, and their textual triggers. In this paper, we propose an information extraction system based on the hidden vector state (HVS) model, called HVS-BioEvent, for biomedical events extraction, and investigate its capability in extracting complex events. METHODS AND MATERIAL HVS has been previously employed for extracting PPIs. In HVS-BioEvent, we propose an automated way to generate abstract annotations for HVS training and further propose novel machine learning approaches for event trigger words identification, and for biomedical events extraction from the HVS parse results. RESULTS Our proposed system achieves an F-score of 49.57% on the corpus used in the BioNLP'09 shared task, which is only 2.38% lower than the best performing system by UTurku in the BioNLP'09 shared task. Nevertheless, HVS-BioEvent outperforms UTurku's system on complex events extraction with 36.57% vs. 30.52% being achieved for extracting regulation events, and 40.61% vs. 38.99% for negative regulation events. CONCLUSIONS The results suggest that the HVS model with the hierarchical hidden state structure is indeed more suitable for complex event extraction since it could naturally model embedded structural context in sentences.
منابع مشابه
Semantic Parsing for Biomedical Event Extraction
We propose a biomedical event extraction system, HVS-BioEvent, which employs the hidden vector state (HVS) model for semantic parsing. Biomedical events extraction needs to deal with complex events consisting of embedded or hierarchical relations among proteins, events, and their textual triggers. In HVS-BioEvent, we further propose novel machine learning approaches for event trigger word ident...
متن کاملExtracting PPIs from MEDLINE using the HVS Model 1 Extracting Protein-Protein Interactions from MEDLINE using the Hidden Vector State Model
Protein-protein interactions referring to the associations of protein molecules are crucial for many biological functions. A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature since most knowledge about them still hides in biomedical publications. We have constructed an information extraction syst...
متن کاملEffective reranking for extracting protein-protein interactions from biomedical literature
A semantic parser based on the hidden vector state (HVS) model has been proposed for extracting protein-protein interactions. The HVS model is an extension of the basic discrete hidden Markov model, in which context is encoded as a stack-oriented state vector and state transitions are factored into a stack shift operation followed by the push of a new preterminal category label. In this paper, ...
متن کاملAn improved hidden vector state model approach and its adaptation in extracting protein interaction information from biomedical literature
Large quantity of knowledge, which is important for biological researchers to unveil the mechanism of life, often hides in the literature, such as journal articles, reports, books and so on. Many approaches focusing on extracting information from unstructured text, such as pattern matching, shallow and full parsing, have been proposed especially for biomedical applications. In this paper, we pr...
متن کاملExtracting Protein-Protein Interactions from MEDLINE using the Hidden Vector State model
A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient abilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 53 3 شماره
صفحات -
تاریخ انتشار 2011